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h i g h l i g h t s

• We propose to use a model average method to improve the estimation of average treatment effects.
• The proposed model average estimator selects weight optimally to minimize estimation mean squared errors.
• Simulation results show that the model average estimator exhibits smaller estimation mean squared errors in post-treatment prediction than AIC or

AICC methods.
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a b s t r a c t

In this paper, we propose to use amodel averagemethod to improve the estimation performance of Hsiao
et al. (2012) panel data approach for program evaluation. Instead of using the two-step model selection
strategywhich chooses onebestmodel according to a criterion such asAIC orAICC,we average over a set of
candidate models. Simulation results show that the model average estimator exhibits smaller estimation
errors in post-treatment prediction than AIC or AICC method.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Econometric models for treatment effect estimation have been
extensively discussed in literature these days. To estimate the
treatment effect of a program or a policy, one needs to measure
the difference between the outcomes under treatment and the
outcomes when treatment is absent, since we do not observe both
outcomes simultaneously. Hsiao et al. (2012) propose a panel data
approach to estimate the counterfactual outcomes. This method
relies on the correlation between the treatment and the control
units. Hsiao et al. (2012) argue that it is the presence of common
factors that cause the cross-sectional dependence and drive
co-movement of all the relevant cross-sectional outcome variables.
Bai et al. (2014) further extend Hsiao et al. (2012) method to
allow for non-stationary data. In finite sample applications, Hsiao
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et al. (2012) propose to select the best model through a two-step
strategy, which is based on comparing the goodness-of-fit statistic
and widely used model selection criterion such as Akaike
information criterion (AIC, Akaike, 1970) and corrected Akaike
information criterion (AICC, Hurvich and Tsai, 1989).

In this paper, we contribute to improve the estimating perfor-
mance of Hsiao et al. (2012) method by using the Jackknife model
average (JMA) method, which is proposed by Hansen and Racine
(2012). Instead of selecting one specific ‘‘best’’ model based on a
criterion, model average method addresses the model uncertainty
problem by averaging over the set of candidate models. We di-
rect interested readers to Buckland et al. (1997), Hansen (2007)
and Wan et al. (2010) for frequentist method for model averaging,
Hoeting et al. (1999) for Bayesian model averaging. Under model
average framework, we select weights for each candidate model
by minimizing a cross-validation criterion function. Hansen and
Racine (2012) show that the computing procedure of JMA is an
application of the quadratic programming technique. They further
prove that JMA estimator is asymptotically optimal in the sense of
achieving the lowest possible expected squared estimation loss. By
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replacing the two-step selection strategywith JMAmethod,we im-
prove the post-treatment prediction of Hsiao et al. (2012) in terms
of mean squared prediction errors (PMSE).

The rest of the paper is organized as follows. Section 2 briefly
reviews both Hsiao et al. (2012) method and the JMA method.
Section 3 reports simulation results to examine the finite sample
performance of our proposed method. Section 4 concludes the
paper.

2. Theoretical model

In this sectionwebriefly discuss the estimationmethod inHsiao
et al. (2012). Suppose there is no treatment to all units up to T1.
At time T1 + 1, there is only one unit that receives a treatment.
Let yt be the treatment unit’s outcome at time t . Correspondingly,
let xt = (x1t , . . . , xNt)′ be the outcomes of N control units at time
t .1 Hsiao et al. (2012) consider the case that both treatment and
control units’ outcomes are generated by a factor model (e.g., Bai
and Ng, 2002) in the absence of treatment for t = 1, . . . , T1:

ỹt = a + Bft + ut , (1)

where ỹt = (yt , x1t , . . . , xNt)′, a = (a1, . . . , aN+1)
′, ft is a K × 1

vector of common factors (they may be unobservable) that affect
outcomes, B is a (N + 1) × K matrix of factor loading, ut =
u1t , . . . , u(N+1)t

′ is a vector of idiosyncratic error. Let y1t and y0t
denote the outcomes of the treated unit with and without the
policy intervention, respectively. Given that there is a treatment at
time T1 + 1, we are interested in estimating the average treatment
effects ∆1 = E(y1t − y0t ). The difficulty is that we cannot observe
y0t for t ≥ T1 + 1. Hsiao et al. (2012) suggest using control units’
outcomes xt to estimate y0t when t ≥ T1 + 1. This can be done by
replacing ft by xt in the treatment unit’s equation yt = a1+b′

1ft+ut
to obtain

yt = γ0 + x′

tγ + vt , (2)

for t = 1, . . . , T1, where γ0 is intercept, γ = (γ1, γ2, . . . , γN)′, vt
satisfies that E(vt) = 0, E(vtxt) = 0 and var(vt) is finite. Let γ̂0
and γ̂ denote the least square estimators of γ0 and γ based on (2),
then we estimate the counterfactual outcome of y0t by

ŷ0t = γ̂0 + x′

t γ̂ , (3)

for t = T1 + 1, . . . , T . Let T2 = T − T1, then the average treatment
effect is estimated by

∆̂1 =
1
T2

T
t=T1+1


yt − ŷ0t


. (4)

In application, N may not be small relative to T1. Thus, it is
advantageous to use only a subset of theN control units rather than
all of them to predict the counterfactuals. ForN control units, there
are 2N different models, and the most appropriate model should
balance the within-sample fit with the out-sample prediction
error. Hsiao et al. (2012) propose a two-step model selection
procedure to find out which model is the most appropriate.
Specifically, in the first step, they use R2 to select the best predictor
for y0t using k control units out of N control units, denoted
by M(k)∗, for k = 1, . . . ,N . Then, in the second step, from
M(1)∗,M(2)∗, . . . ,M(N)∗, they pin down one best model from
the N candidate models in terms of model selection criterion
such as Akaike information criterion (AIC) and corrected Akaike
information criterion (AICC).

1 UnderHsiao et al. (2012), there areN+1units y1, y2, . . . , yN+1 . The first identity
is assumed to be the treatment unit and the remained N are control units. So under
our notations, y = y1, x1 = y2, x2 = y3, . . . , xN = yN+1 .
In this paper, we avoid choosing one ‘‘best’’ model out of the
2N models as it could be time consuming when N is large. On the
contrary, we apply the model average method. First, we regress
yt on the outcomes of each individual control unit x1t , . . . , xNt ,
t = 1, 2, . . . , T1, and then obtain their respective goodness-of-fit
statistics R2

1, R
2
2, . . . , R

2
N . We order these goodness-of-fit statistics

so that R2
(1) ≥ R2

(2) ≥ · · · ≥ R2
(N−1) ≥ R2

(N), where R2
(·) is the

order statistic, and x(1), x(2), . . . , x(N−1), x(N) correspond to the re-
gressor in each model, i.e., x(j) is the regressor that has a goodness-
of-fit R2

(j), j = 1, . . . ,N . Second, we form our first candidate
model by regressing yt on (1, x(1)) and thendenote the firstmodel’s

linear fit by a T1 × 1 vector µ̂1
=


µ̂1

1, µ̂
1
2, . . . , µ̂

1
T1

′

, where

µ̂1
t = (1, x(1),t)γ̂

1 for t = 1, 2, .., T1 and x(1),t represents the ob-

servation for x(1) at time t . γ̂1
=


γ̂ 1
0 , γ̂ 1

(1)

′

denotes the OLS es-
timator based on regressing yt on (1, x(1),t) with t = 1, . . . , T1.
The second candidate model regresses yt on (1, x(1),t , x(2),t) with
t = 1, . . . , T1, and the corresponding linear estimate is µ̂2

=
µ̂2

1, µ̂
2
2, . . . , µ̂

2
T1

′

, where µ̂2
t = (1, x(1),t , x(2),t)γ̂

2 for t = 1, 2,

.., T1 and γ̂
2

=


γ̂ 2
0 , γ̂ 2

(1), γ̂
2
(2)

′

denotes the OLS estimator ob-
tained from regressing yt on (1, x(1),t , x(2),t) with t = 1, . . . , T1.
We continue this procedure until all N control units are included,
i.e., the last one is to regress yt on


1, x(1),t , x(2),t , . . . , x(N),t


and

we denote the fit as µ̂N
=


µ̂N

1 , µ̂N
2 , . . . , µ̂N

T1

′

, where µ̂N
t = (1,

x(1),t , x(2),t , . . . , x(N),t)γ̂
N for t = 1, 2, .., T1, γ̂

N
=


γ̂ N
0 , γ̂ N

(1), γ̂
N
(2),

. . . , γ̂ N
(N)

′
denotes the OLS estimator obtained from regressing yt

on (1, x(1),t , x(2),t , . . . , x(N),t) with t = 1, . . . , T1. Thus, we obtain
N candidate models’ fits with the corresponding set of estimates
denoted as


µ̂1, µ̂2, . . . , µ̂N


. Letw =


w1, w2, . . . , wN

′ be a set
of weights which are non-negative and

N
i=1 wi

= 1. Given w, a
model averaging estimator could be formulated as

µ̂(w) =

N
i=1

wiµ̂i
= µ̂ w, (5)

where µ̂ = (µ̂1, µ̂2, . . . , µ̂N) is a T1 × N matrix.
Hansen and Racine (2012) propose to select the empirical wei-

ghts w in the Jackknife manner (leave-one-out cross-validation).
For the ith model’s estimate µ̂i, we denote the Jackknife estimator

as a T1 × 1 vector µ̃i
=


µ̃i

1,−1, µ̃
i
2,−2, . . . , µ̃

i
T1,−T1

′

, where µ̃i
k,−k

represents the estimator of µ̂i
k with the kth observation deleted.

Thus, the Jackknife residual for the ith model, written in a T1 × 1
vector form, is ẽi = y − µ̃i, where y =


y1, y2, . . . , yT1

′. We fur-
ther define the Jackknife version of the averaging estimator as

µ̃(w) =

N
i=1

wiµ̃i
= µ̃ w,

where µ̃ =

µ̃1, µ̃2, . . . , µ̃N


is a T1 ×N matrix, and the Jackknife

residuals as

ẽ(w) = y − µ̃(w) =

N
i=1

wiy −

N
i=1

wiµ̃i
=

N
i=1

wi y − µ̃i
=

N
i=1

wiẽi = ẽ w,

where ẽ =

ẽ1, ẽ2, . . . , ẽN


is a T1 × N matrix. Then, the least

square cross-validation criterion function could be written as

CVT1(w) =
1
T1

ẽ(w)′ ẽ(w) = w′ ST1 w, (6)
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Table 1
Comparison of PMSE between model average method (MA) and HCWmethod (AICC and AIC): 1 factor.

σ 2
= 1 σ 2

= 0.5 σ 2
= 0.1

MA AICC AIC MA AICC AIC MA AICC AIC

T1 = 25, T = 35
Avg. # – 3.56 10.92 – 3.63 11.14 – 3.66 10.95
PMSE 1.8404 2.0967 6.0158 0.9199 1.0540 3.1426 0.1838 0.2101 0.7461
T1 = 40, T = 50
Avg. # – 3.71 5.91 – 3.75 5.94 – 3.76 5.97
PMSE 1.3841 1.7310 1.8935 0.6919 0.8635 0.9643 0.1383 0.1728 0.1915
T1 = 60, T = 70
Avg. # – 4.14 5.60 – 4.20 5.37 – 4.19 5.39
PMSE 1.2553 1.4180 1.4722 0.6282 0.7258 0.7473 0.1258 0.1453 0.1496
Table 2
Comparison of PMSE between model average method (MA) and HCWmethod (AICC and AIC): 2 factors.

σ 2
= 1 σ 2

= 0.5 σ 2
= 0.1

MA AICC AIC MA AICC AIC MA AICC AIC

T1 = 25, T = 35
Avg. # – 4.16 11.09 – 4.11 10.97 – 4.24 11.15
PMSE 2.0749 2.4358 6.2314 1.0626 1.1658 2.7615 0.2195 0.2372 0.6337
T1 = 40, T = 50
Avg. # – 3.94 6.25 – 4.05 6.28 – 3.98 6.35
PMSE 1.6196 1.8450 1.9634 0.8160 0.9380 1.0153 0.1639 0.1865 0.1970
T1 = 60, T = 70
Avg. # – 4.35 5.58 – 4.50 5.78 – 4.54 5.83
PMSE 1.3829 1.6194 1.6502 0.6962 0.7904 0.7986 0.1400 0.1578 0.1605
where ST1 =
1
T1

ẽ′ ẽ is a N × N matrix. The Jackknife weight
ŵ is the value that minimizes (6) under the restrictions that each
weight is between 0 and 1 and their summation equals to 1. Since
Eq. (6) is quadratic in w, we could get ŵ by applying the standard
quadratic programming technique which requires short comput-
ing time. With the selected weight ŵ above, the Jackknife model
average (JMA) estimator of µ could be written as µ̂(ŵ) = µ̂ŵ, and
our model averaging estimation of the treatment effect defined in
(4) could be calculated through ŷ0t = µ̂(ŵ) =

N
i=1 ŵi µ̂i for

t = T1 + 1, . . . , T .
Let µt = E(yt |xt) denotes the conditional mean of yt given

xt , t = 1, 2, . . . , T1, so that µ = (µ1, µ2, . . . , µT1)
′ is a

T1 × 1 vector. Define LT1(w) =
1
T1


µ − µ̂(w)

′ 
µ − µ̂(w)


as

a measure for the fit of the pre-treatment period, and RT2(w) =

E
 1
T2


y0 − µ̂0 w

′ y0 − µ̂0 w


as a measure for the prediction
errors of the counterfactual outcomes for the post-treatment pe-
riod, where y0 = (y0T1+1, y

0
T1+2, . . . , y

0
T )

′, µ̂0
=


µ̂0,1, µ̂0,2, . . . ,

µ̂0,N

is a T2 ×N matrix with µ̂0,j

=


µ̂

0,j
T1+1, µ̂

0,j
T1+2, . . . , µ̂

0,j
T

′

as a

T2×1 vector, where for j = 1, . . . ,N , µ̂0,j
t =


1, x(1),t , . . . , x(j),t


γ̂
j

(for t = T1 + 1, T1 + 2, . . . , T ) with γ̂
j being the OLS estimate

of the coefficient vector from regressing yt on

1, x(1),t , . . . , x(j),t


using the pre-treatment period data t = 1, . . . , T1. Thus, µ̂0 rep-
resents the out-sample predictions of the counterfactual outcome
from the N candidate models. Therefore, µ̂0w is (a T2 × 1 vec-
tor) the model averaging estimate of the counterfactual outcome
y0 = (y0T1+1, y

0
T1+2, . . . , y

0
T )

′. Under mild assumptions, Hansen and
Racine (2012) prove the asymptotic optimality of the Jackknife se-
lected weights by showing the following:

LT1(ŵ)

inf
w∈Dw

LT1(w)

p
→ 1 as T1 → ∞, (7)

where Dw = {w ∈ RN
+

|
N

j=1 wj = 1}. Eq. (7) indicates that the
mean of squared estimation loss of the Jackknife model average
(JMA) estimator is asymptotically identical to that of the infeasible
best possible model averaging estimator. Let µ0

= (µT1+1, µT1+2,

. . . , µT1+T2)
′ so RT2(w) = E

 1
T2


µ0

− µ̂0 w
′ 

µ0
− µ̂0 w


+

1
T2T1+T2

t=T1+1 E(v2
t ), where the second term is unrelated to w. Hansen

(2008) proves E
 1
T2


µ0

− µ̂0 w
′ 

µ0
− µ̂0 w


= E


LT1(w)


(1+

op(1)) ≈ E

LT1(w)


, which together with the asymptotic opti-

mality shown by (7) prompts us to use the JMA estimator for out-
sample prediction in the current paper.

3. Numerical studies

We compare the performance of the Jackknife model average
methodwith themethod inHsiao et al. (2012) throughMonte Carlo
simulations. For comparing purposes, we generally follow the set-
tings of their work: we generate the model with 1 treatment unit
and 20 control units (N = 20), and the pre-treatment period T1 =

25, 40 and 60. The post-treatment period includes T −T1 = 10 ob-
servations. As in Hsiao et al. (2012), we consider 1-factor, 2-factor
and 3-factor structures as the following:
1-factor:

f1t = 0.95f1t−1 + ϵ1t ,

2-factor:

f1t = 0.3f1t−1 + ϵ1t ,

f2t = 0.6f2t−1 + ϵ2t ,

3-factor:

f1t = 0.8f1t−1 + ϵ1t ,

f2t = −0.6f2t−1 + ϵ2t + 0.8ϵ2t−1,

f3t = ϵ3t + 0.9ϵ3t−1 + 0.4ϵ3t−2,

where ϵit is distributed toN(0, 1), i = 1, 2, 3. uit in (1) is generated
from N(0, σ 2) where σ 2

= 1, 0.5 and 0.1, and B is generated
from N(1, 1). We examine the performance of our model average
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Table 3
Comparison of PMSE between model average method (MA) and HCWmethod (AICC and AIC): 3 factors.

σ 2
= 1 σ 2

= 0.5 σ 2
= 0.1

MA AICC AIC MA AICC AIC MA AICC AIC

T1 = 25, T = 35
Avg. # – 4.40 11.18 – 4.54 11.70 – 4.74 11.72
PMSE 2.4758 2.8493 6.5231 1.2956 1.4640 3.2716 0.2732 0.3051 0.7024
T1 = 40, T = 50
Avg. # – 4.90 7.10 – 5.08 7.22 – 5.04 7.24
PMSE 1.7900 1.9705 2.1136 0.9051 0.9716 1.0804 0.1829 0.1987 0.2095
T1 = 60, T = 70
Avg. # – 5.12 6.34 – 5.18 6.36 – 5.24 6.42
PMSE 1.5205 1.6437 1.6842 0.7659 0.8302 0.8516 0.1542 0.1677 0.1685
method with Hsiao et al. (2012) by comparing the post-treatment
mean squared prediction errors (PMSE), which is defined as

PMSE =
1

T − T1

T
t=T1+1

(y0t − ŷ0t )
2,

where ŷ0t is the estimated counterfactual outcome by using the
AIC method, or the AICC method, or our proposed Jackknife model
average method.

We repeat each of the structures 1000 times. The results are
displayed in Tables 1–3. TheAvg. # is the averagenumber of control
units selected by the AIC or the AICC methods. Simulation results
show that our method has smaller PMSE in all cases, indicating
improvedpredicting performance by replacing the two-stepmodel
selection strategy with the JMA method.

4. Conclusion

In this paperwe suggest to replace the two-stepmodel selection
strategy in Hsiao et al. (2012) with the Jackknife model average
(JMA) method to estimate average treatment effect of a program
or a policy. By applying the JMA, we show that the post-treatment
predicting performance improves in terms of prediction mean
squared error.
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